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6. TREATMENT OF UNCERTAINTY AND VARIABILITY

This chapter summarizes the approach for assessing uncertainty and variability in
TRIM.FaTE, which follows the general approach for TRIM as described in Chapter 3 of the
TRIM Status Report (USEPA 1999).  Additional background on how this method was selected is
provided in Appendix B of the TRIM Status Report (USEPA 1999).  The following text box
presents definitions for the key terms used in this chapter to explain the uncertainty and
variability analysis framework for TRIM.FaTE.

The EPA chose a staged approach for analysis of uncertainty and variability.  The use of
a staged approach has advantages for models as complex as TRIM.FaTE.  The first stage,
consisting of sensitivity analyses that are comparatively easy to implement, identifies influential
parameters and generates an importance-ranking of parameters.  The results of this stage are
useful for narrowing down the number of parameters to be analyzed in the second-stage
uncertainty and variability analysis and are also useful in evaluating model structure and
modeling assumptions.  The second stage involves uncertainty and variability analyses of

KEY TERMS FOR UNCERTAINTY AND VARIABILITY ANALYSIS

Variability

Variability represents the diversity or heterogeneity in a population or parameter, and is sometimes
referred to as natural variability.  An example is the variation in the heights of people.  Variability cannot
be reduced by using more measurements or measurements with increased precision (e.g., taking more
precise measurements of people’s heights does not reduce the natural variation in heights).  However,
it can often be accounted for by a more detailed model formulation (e.g., modeling peoples’ heights in
terms of age will reduce the unexplained variability due to variation of heights).

Uncertainty

Uncertainty refers to the lack of knowledge regarding the actual values of model input variables
(parameter uncertainty) and of physical systems (model uncertainty).  For example, parameter
uncertainty results when non-representative sampling (to measure the distribution of parameter values)
gives sampling errors.  Model uncertainty results from simplification of complex physical systems. 
Uncertainty can be reduced through improved measurements and improved model formulation.

Sensitivity analysis

Sensitivity analyses assess the effect of changes in individual model input parameters on model
predictions.  This is usually done by varying one parameter at a time and recording the associated 
changes in model response.  One primary objective of a sensitivity analysis is to rank the input
parameters on the basis of their influence on or contribution to the variability in the model output.

Uncertainty analysis

Uncertainty analysis involves the propagation of uncertainties and natural variability in a model’s inputs
to calculate the uncertainty and variability in the model outputs.  It can also involve an analysis of the
uncertainties resulting from model formulation.  The contributions of the uncertainty and variability of
each model input to the uncertainty and variability of the model predictions are explicitly quantified.
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increasing detail and complexity.  Figure 6-1 illustrates this staged approach for the TRIM.FaTE
module and how the functional parts fit together.

6.1 SENSITIVITY ANALYSES

The sensitivity analysis provides a quantitative characterization of the sensitivity of the
model results to variations in the model input parameters.  A ranking of sensitivity results can be
used to provide a first-order determination of the most influential parameters that will need to be
included in the detailed uncertainty analysis.  Assessment of whether it is reasonable that
parameters would have the influence they do in the model can also aid in evaluating model
structure and modeling assumptions.

The TRIM.FaTE sensitivity feature allows the user to choose a set of parameters to vary,
the compartments in which to vary them, and the compartments and chemicals for which the
results are of interest.  A parameter can be varied in parallel across all compartments of a
specific type (e.g., vary the organic carbon content in surface soil simultaneously for all surface
soil compartments, where the varying parameter values would match across all surface soil
compartments) or independently in specific compartments (e.g., vary organic carbon content in
surface soil separately for each compartment).  One simulation of the user’s design (e.g., a 5-year
dynamic run, or a steady-state analysis) is completed per selected parameter for comparison to
the base simulation of the same design.   All parameter values in that simulation would match the
values in the base simulation except for the selected parameter which is set equal to a new value.

In the current version of TRIM.FaTE, the parameters to be varied must be constants or 
time-varying values such as meteorological data (i.e., parameters that are specified by formulas
in the model cannot be varied).  The amount by which each selected parameter is varied
(represented by )p) is specified by the user, and may be a small fixed percentage (e.g., one to ten
percent) of the nominal parameter value or a small fixed percentage of a measure of the spread of
values the parameter typically addresses.  One can use the standard deviation or a range of
percentiles (e.g., the range from the 10th to the 90th percentile).  A simulation for each parameter
is required for this analysis; thus, 2,000 simulations would be needed to examine 2,000
parameters.

For the selected compartment and chemical outputs of interest, the system will calculate
the sensitivity score for each parameter based on a specified result (e.g., the average
concentration values for the last year of the simulations).  Thus, the user may run simulations of
the TRIM.FaTE model with the parameters being varied singly, with the model results
summarized to show the sensitivity to parameters and to identify the most influential parameters.

The results of a sensitivity analysis are applicable to a particular location and for the
range of conditions (i.e., parameter space) simulated, and may not apply to conditions outside of
this.  To generate more broadly applicable sensitivity results, the sensitivity analysis can be
performed for a number of different “nominal” base simulations representing distinct modeling
regimes (e.g., summer and winter time periods, wet and arid locations).
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Uncertainty and Variability Analysis Framework

(Illustrated for TRIM.FaTE Module)
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Varying parameters so that they are both larger and smaller by )p (i.e., varying by ±)p
instead of just +)p) doubles the number of simulations required to complete the analysis, but
allows the user to calculate the local nonlinearity of the effect of varying a parameter on the
model results (i.e., the nonlinear impact of varying parameters around a given value, for values
close to the original value).  These results are reported as second order terms in the sensitivity
measures to show the extent of local nonlinearity for parameters.  Non-local nonlinearities (i.e.,
the nonlinear effects of wider variations of a parameter value) are quantified by increasing )p to
be in the range of 10 to 100 percent of the nominal values or spread of the parameters.

The results of these simulations are processed to produce measures of the importance of
the parameters in the sense of how the model results change when the parameters are changed.
The measures of parameter sensitivity and ranking automatically computed in sensitivity
analyses are the sensitivity, the elasticity, and the sensitivity score.  The user can set up
sensitivity simulations to calculate the nominal range sensitivity if desired.  We define these
measures following Morgan and Henrion (1990).

The sensitivity of a model output to a parameter is the rate of change of the output with
respect to changes in the parameter.  Denoting the parameter as p and the model output as y, the
sensitivity (at a particular value p0 of p) is conventionally defined as the partial derivative My/Mp,
evaluated at p0.  This measure describes how the model responds to small changes in the
parameter p for values of p that are close to p0, keeping all other parameters fixed, and is referred
to as a “local” measure.  

We calculate the sensitivity by:

where )p is a small change in the parameter value and:

)y = y(p0+)p)!y(p0) (15)

The nominal range sensitivity is used to assess changes in the model outputs resulting
from large variations in input parameters.  The effects on model outputs of varying each input
parameter from the low end to the high end of the range of values for the parameter, are
calculated in essentially the same way as the local sensitivity:
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Figure 6-2
Illustration of Sensitivity in One Dimension
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The sensitivity can be interpreted as the slope of the tangent to the response surface y(p)
at the point p0 (Figure 6-2).  Note that the calculated value of the sensitivity depends both on the
nominal parameter value p0 and the amount of change )p.  The sensitivity to a parameter can be
quite different at different values p0 of the parameter.  It can be useful to vary both )p and p0 to
see how the sensitivity depends on them.

The elasticity is defined as the ratio of the relative change in the model output y to a
specified relative change in a parameter p:

where )p/p0 is a fixed relative change.  For example, if the specified parameter change is one
percent ()p/p0 = 0.01), then the elasticity is the percent change in y due to a one percent change
in the parameter p, evaluated at a particular value p0 of p.  

The sensitivity score is the elasticity weighted by a normalized measure of the variability
of the parameter which takes the form of a normalized range or normalized standard deviation of
the parameter.  The sensitivity score for the model input parameter p with respect to the model
output y is defined as:
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(18)

where:

ªy/ªp = change in output y per change in input p
F/: = coefficient of variation of p (standard deviation/mean)
po/yo = ratio of nominal values of the input and output

Other normalized measures of the variation of the parameter can be used in place of the
coefficient of variation (e.g., the range of p divided by the mean).

6.2 THE MONTE CARLO APPROACH FOR UNCERTAINTY AND
VARIABILITY ANALYSES

A Monte Carlo approach with Latin Hypercube Sampling (LHS) is available within
TRIM.FaTE for characterizing and analyzing the uncertainty and variability of the TRIM.FaTE
outputs, with respect to the model inputs and parameters.  The primary advantages of Monte
Carlo methods for this type of analysis are the generality with which they can be applied, the
lack of assumptions required, and their computational efficiency.  Particular strengths of a Monte
Carlo approach relevant to TRIM uncertainty and variability analyses include the following:

• Monte Carlo (MC) can be used to analyze many parameters.

• MC handles different ways of specifying parameter distributions.

• MC can treat correlations and dependencies.

• MC allows for tracking the propagation of uncertainty and variability through model
components at any level.

• MC gives estimates of confidence bounds for the estimates of the output distributions.

• MC allows precision to be increased easily by performing additional iterations.

• LHS is an efficient sampling scheme, reducing the number of simulations required.  (MC
with LHS has computational complexity linear with the number of parameters or model
inputs that are being analyzed.)

• MC handles complex algorithms in the model without increased difficulty.

• MC is flexible and will accommodate future additional analyses without major
restructuring.
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• MC output is compatible with a number of methods for specific analyses of uncertainty
and variability, including response surfaces, regression models, classification and
regression trees (CART), ranking methods, and combinatorial analysis.

• MC is widely used, is generally accepted in the scientific community, and can be
explained to a lay audience.

A significant limitation results from the fact that the analysis of uncertainty and
variability requires estimates of parameter distributions that reflect both uncertainty and
variability individually, and information on the distributions for parameters is not available for
most parameters.  Estimates of dependencies (i.e., correlations) between parameters would
enable a more detailed analysis to be performed, although this is of lesser importance.  However,
when a parameter distribution has been developed, it is rarely separated into components of
uncertainty and variability.  This limitation of the Monte Carlo approach can be addressed by
developing distributions for the parameters to which the model shows the greatest sensitivity. 
Distributions are not needed for all parameters.

6.2.1 TWO-STAGE MONTE CARLO DESIGN

Two-stage Monte Carlo designs are used to characterize uncertainty and variability
separately.  This is not currently implemented in TRIM.FaTE, and is being considered for a
future version.  Joint uncertainty and variability Monte Carlo simulations are generated based on
sampling from an uncertainty distribution and a variability distribution for each parameter, with
the uncertainty distributions sampled in an outer loop and the variability distributions sampled in
an inner loop.  For each uncertainty realization (outer loop sample) there is a specified
distribution of variability (for each parameter) from which several samples are drawn to
represent variability in the inner loop.  These several samples represent one variability
realization.  Figure 6-3 illustrates the structure of this two-stage Monte Carlo design.

As an example, suppose there are Nu samples drawn from the uncertainty distributions,
and that for each uncertainty sample there are Nv variability samples.  The cumulative
distribution function (of a model output) representing variability for that uncertainty sample can
be estimated from these Nv variability samples and statistics can be calculated (e.g., mean,
percentiles, variance).  For each of these statistics, there are Nu values, corresponding to the Nu
uncertainty samples.  These are then used to calculate a cumulative distribution function for each
statistic, representing the uncertainty distribution for that statistic.
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Two-stage Monte Carlo Approach
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6.2.2 DISTRIBUTIONS OF INPUT PARAMETERS

The Monte Carlo approach requires specification of probability distributions for each
parameter being analyzed for its role in the overall uncertainty of the model.  In general,
distributions can be specified as parametric forms of probability distribution functions (PDFs) or
cumulative distribution functions (CDFs), as nonparametric PDFs or CDFs, or as sets of data
points from which samples are drawn.  At the present time the distributions supported by
TRIM.FaTE are the uniform, normal, lognormal and triangular distributions.  Future
enhancements to TRIM.FaTE will include an expansion of the types of distributions which can
be specified by the user.

Distributions for parameter variability and for parameter uncertainty are required for
those parameters to be analyzed; TRIM does not use “default” distributions where there is no
information.  Parameters without any specification of distributions are treated as if they are
known exactly.

6.2.3 LATIN HYPERCUBE SAMPLING

There are four sampling techniques that are widely used in Monte Carlo methods for
generating random samples from parameter distributions:  simple random sampling, Latin
hypercube sampling (LHS), midpoint LHS, and importance sampling.  Randomness is an
important feature of these methods for sampling, since it allows one to directly estimate the
precision of the statistics estimated using the Monte Carlo approach.

Both the simple random sampling and LHS techniques are available in TRIM.FaTE.  The
preferred sampling technique is LHS, which employs a stratified random sampling without
replacement scheme that is very efficient for sampling, especially for multiparameter models
(Iman and Shortencarier 1984, Iman and Helton 1987, Helton and Davis 2000).  Importance
sampling strategies also will be used in conjunction with LHS to obtain better coverage of
distribution tails or extreme values.  The strata for LHS are chosen to be intervals partitioning
the range of each parameter, in such a way that the parameter has equal probability of realization
within each interval.  Then a sample is selected randomly from each of the intervals.  To
illustrate this, say there are k intervals used for each parameter.  A random sample is selected
from within each interval, and this is repeated for each parameter, yielding k samples for each
parameter.  Then, k multivariate samples are constructed by randomly pairing up the samples for
each parameter.  These k sets of parameter values (each set containing a value for each
parameter) are referred to as the Latin hypercube sample.

If there are correlations among the parameters, there is a technique for sampling within
the LHS framework so that the sample reflects the correlations (Iman and Conover 1982, Iman et
al. 1985).  This treatment of correlation is based on rank-order correlation (Kendall and Gibbons
1990) and has desirable properties.  It can be used with any distribution and with any sampling
scheme, and it does not change the marginal distributions of the parameters.  This is being
considered for inclusion in a future version of TRIM.FaTE.
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6.2.4 TREATMENT OF TAILS OF DISTRIBUTIONS

As noted above, for certain influential parameters an importance sampling technique will
be incorporated to obtain adequate sampling coverage of extreme values of these parameters. 
Importance sampling refers to a class of sampling techniques that takes into account the areas of
a distribution that are important to the analysis, providing enhanced detail in these areas. 
Importance sampling is often used when increased accuracy in one or both tails of a distribution
is desired.  These techniques are being considered for a future version of TRIM.FaTE.

6.2.5 TRACKING INFORMATION BETWEEN MODULES

There are two levels at which tracking of information related to uncertainty analysis
occurs; the first is within each TRIM module, and the second is from one TRIM module to the
next.  The information passed from one TRIM module to the next (e.g., from TRIM.FaTE to
TRIM.Expo) needs to provide enough detail to allow for continuation of the Monte Carlo
propagation of uncertainty and variability in the next module.  Information on the joint
distributions of a TRIM module’s inputs and outputs is required to do this, for both uncertainty
and variability.  This is accomplished by maintaining a record of the input parameter values used
for each Monte Carlo simulation of a TRIM module.  Simulations of one module are randomly
selected for input to Monte Carlo simulations for a succeeding module, while keeping track of
the input values for all simulations.

For example, take the first module to be TRIM.FaTE and the following module to be
TRIM.Expo.  TRIM.Expo takes as inputs some of the results generated by TRIM.FaTE, in
addition to other input parameters.  Suppose that 100 Monte Carlo simulations of TRIM.FaTE
are performed and, following this, TRIM.Expo is going to be run for 300 Monte Carlo
simulations.  Figure 6-4 provides an illustration of this example.  For each of the TRIM.Expo
Monte Carlo simulations, one of the TRIM.FaTE simulations is randomly selected and the
results of this simulation used for input to TRIM.Expo.  There are other input parameters also
input to TRIM.Expo, and some of these might be sampled from uncertainty and/or variability
distributions as part of the Monte Carlo process.  Using the notation of Figure 6-4, suppose the ith

TRIM.FaTE simulation is selected for the jth Monte Carlo simulation of TRIM.Expo.  For this
simulation, TRIM.FaTE inputs {Ai} result in outputs {Bi} which are then input to TRIM.Expo. 
The other inputs to the jth Monte Carlo simulation of TRIM.Expo are denoted as {Cj}, and the
results of this simulation are denoted as {Dj}.  Then, each of the 300 simulations of TRIM.Expo
are tagged with the indices ij and j  to respectively track the corresponding TRIM.FaTE and
TRIM.Expo input values, for j = 1 to 300.  The index I takes values from 1 to 100, but is indexed
by j so that the TRIM.FaTE inputs used for the jth TRIM.Expo simulation are tracked.

The same process would be used for a module following TRIM.Expo, where the 300
TRIM.Expo simulations would be tagged by ij,  j = 1 to 300.
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Example of Propagation of Uncertainty and Variability Between TRIM Modules
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Care must be taken to ensure that the model input values are consistent in sequences of
runs.  For example, if there is an input to TRIM.FaTE which is also an input to TRIM.Expo, then
the value for the TRIM.Expo simulation should be the same as the TRIM.FaTE input value. 
Similar consistency constraints should be imposed if joint variables are highly correlated or
related by a functional relationship.

6.2.6 COMPUTATIONAL RESOURCES

Although the Monte Carlo technique is very efficient, Monte Carlo simulations of
TRIM.FaTE require substantial computer processing time, especially when treating more than a
few parameters.  The available computational resources can be a limiting factor in the scope of
the analysis performed.  Consequently, the more detailed analyses may have to restrict their
scope to small numbers of parameters being jointly varied.

Computer processing time for both the uncertainty propagation and tracking and the
TRIM.FaTE model depends on the definition of the TRIM.FaTE modeling scenario, in terms of
the numbers of compartments, time steps, length of simulation, chemicals, and so forth.  It also
depends on the number of parameters and number of model outputs analyzed, the sizes of the
Monte Carlo samples (which relates to the number of simulations), and the level of detail of the
analysis.

Uncertainty analyses may be conducted running TRIM.FaTE in a steady-state mode,
which requires drastically less processing time than the dynamic modeling mode.  In the steady-
state mode, TRIM.FaTE calculates single values for chemical moles, mass, and concentration for
each compartment.  These values approximate the steady-state levels that the chemical would
reach if the dynamic form of the model was run for a long enough period of time to allow all
chemical mass inputs and outputs to balance for each compartment (i.e., to reach a steady-state).

6.2.7 SPATIAL AND TEMPORAL RESOLUTION AND AGGREGATION

Estimation of the effects of spatial and temporal aggregation on uncertainty and
variability could be accomplished by sensitivity analyses of Monte Carlo results.  For analysis of
spatial aggregation, the user could set up a small number of TRIM.FaTE scenarios with
increasing levels of spatial resolution (decreasing levels of aggregation), and run the same set of
simple Monte Carlo simulations for each scenario.  Comparison of the Monte Carlo output
distributions for the scenarios would show the impact of the aggregation on uncertainty and
variability for the scenarios modeled.  Similarly, the effects on model output uncertainty of
temporal aggregation could be assessed by comparing uncertainty results from scenarios with
different levels of temporal aggregation.

6.2.8 SPECIFICATION OF PROBABILITY DISTRIBUTIONS OF MODEL INPUTS

The need for distributions for the input parameters is discussed above.  Implementation
of this Monte Carlo approach employs a data file that specifies the distributions of uncertainty
and variability for each parameter.  For each parameter, this file contains the distribution name
(e.g., lognormal) and the parameters or data that complete the specification of the distribution.  A
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distribution for variability and a distribution for uncertainty is required for each parameter.  As
described in Section 6.2.1, both variability and uncertainty distributions are used a two-stage
Monte Carlo analysis.

There are often physical constraints on values of parameters and intermediate quantities
in the model; for example, mass is always non-negative.  These can have implications for how
parameter distributions are set.  The specified distributional forms should satisfy the physical
constraints as well as reflect the distributions indicated by the available data.

6.3 PRESENTATION OF  UNCERTAINTY RESULTS

When a model has many inputs and is complex, as TRIM.FaTE is, the analyst will make
use of methods that are simple and give a first-order picture of uncertainty, as well as more
complex methods giving a more refined, detailed analysis of uncertainty.  There are several ways
to form summary measures and present the uncertainty and variability of a modeling system. 
Loosely speaking, “measures” are one or a small number of descriptive statistics, such as the
sensitivity score, or the 10th, 50th, and 90th percentiles of a distribution.  In addition to summary
measures, ways of presenting the results include graphs of distributions of model outputs, tree
diagrams, other graphs, and tables of statistics.

Results from Monte Carlo simulations are collected in a data file which can be accessed
with other analysis software, such as graphical and statistical software, to analyze and present
the results of the uncertainty and variability analysis.  In the future, the overall TRIM framework
or TRIM.Risk may be used to generate these results:

• Sensitivity
• Sensitivity score
• Elasticity
• Probability density functions
• Cumulative distribution functions
• Confidence intervals
• Tables of statistics
• Rank order correlation
• Correlation matrix
• Scatter plots, scatter plot matrix

The first three of these are produced from results of the sensitivity simulations; the remainder
can be produced from the Monte Carlo results.
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